If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( k )
3*k^2+8*k-11 = 0
3*k^2-(14*k)+11 = 0
3*k^2+8*k-11 = 0
3*k^2+8*k-11 = 0
3*k^2+8*k-11 = 0
DELTA = 8^2-(-11*3*4)
DELTA = 196
DELTA > 0
k = (196^(1/2)-8)/(2*3) or k = (-196^(1/2)-8)/(2*3)
k = 1 or k = -11/3
3*k^2-(14*k)+11 = 0
3*k^2-(14*k)+11 = 0
3*k^2-14*k+11 = 0
3*k^2-14*k+11 = 0
DELTA = (-14)^2-(3*4*11)
DELTA = 64
DELTA > 0
k = (64^(1/2)+14)/(2*3) or k = (14-64^(1/2))/(2*3)
k = 11/3 or k = 1
k in (-oo:-11/3) U (-11/3:1) U (1:11/3) U (11/3:+oo)
(3*k^2-(2*k)-1)/(3*k^2-(14*k)+11)-((9*k^2-1)/(3*k^2+8*k-11)) = 0
(3*k^2-2*k-1)/(3*k^2-14*k+11)-((9*k^2-1)/(3*k^2+8*k-11)) = 0
(3*k^2-2*k-1)/(3*k^2-14*k+11)+(-1*(9*k^2-1))/(3*k^2+8*k-11) = 0
3*k^2-14*k+11 = 0
3*k^2-14*k+11 = 0
3*k^2-14*k+11 = 0
DELTA = (-14)^2-(3*4*11)
DELTA = 64
DELTA > 0
k = (64^(1/2)+14)/(2*3) or k = (14-64^(1/2))/(2*3)
k = 11/3 or k = 1
(k-1)*(k-11/3) = 0
3*k^2+8*k-11 = 0
3*k^2+8*k-11 = 0
3*k^2+8*k-11 = 0
DELTA = 8^2-(-11*3*4)
DELTA = 196
DELTA > 0
k = (196^(1/2)-8)/(2*3) or k = (-196^(1/2)-8)/(2*3)
k = 1 or k = -11/3
(k+11/3)*(k-1) = 0
(3*k^2-2*k-1)/((k-1)*(k-11/3))+(-1*(9*k^2-1))/((k+11/3)*(k-1)) = 0
((3*k^2-2*k-1)*(k+11/3))/((k-1)*(k-11/3)*(k+11/3))+(-1*(9*k^2-1)*(k-11/3))/((k-1)*(k-11/3)*(k+11/3)) = 0
(3*k^2-2*k-1)*(k+11/3)-1*(9*k^2-1)*(k-11/3) = 0
42*k^2-6*k^3-22/3*k-22/3 = 0
42*k^2-6*k^3-22/3*k-22/3 = 0
2*(21*k^2-3*k^3-11/3*k-11/3) = 0
21*k^2-3*k^3+(-11/3)*k-11/3 = 0
21*k^2-3*k^3+(-11/3)*k-11/3 = 0 // * 0
{ 1, -1, 11, -11 }
1
k = 1
63*k^2-9*k^3-11*k-11 = 32
1
-1
k = -1
63*k^2-9*k^3-11*k-11 = 72
-1
11
k = 11
63*k^2-9*k^3-11*k-11 = -4488
11
-11
k = -11
63*k^2-9*k^3-11*k-11 = 19712
-11
{ 1/3, -1/3, 1/9, -1/9, -1/3, 1/3, -1/9, 1/9, 11/3, -11/3, 11/9, -11/9, -11/3, 11/3, -11/9, 11/9 }
1/3
k
1/3
63*k^2-9*k^3-11*k-11 = -8
1/3
-1/3
k
-1/3
63*k^2-9*k^3-11*k-11 = 0
-1/3
k+1/3
66*k-9*k^2-33
63*k^2-9*k^3-11*k-11
k+1/3
9*k^3+3*k^2
66*k^2-11*k-11
-66*k^2-22*k
-33*k-11
33*k+11
0
66*k-9*k^2-33 = 0
DELTA = 66^2-(-33*(-9)*4)
DELTA = 3168
DELTA > 0
k = (3168^(1/2)-66)/(-9*2) or k = (-3168^(1/2)-66)/(-9*2)
k = (12*22^(1/2)-66)/(-18) or k = (-12*22^(1/2)-66)/(-18)
k in { (12*22^(1/2)-66)/(-18), (-12*22^(1/2)-66)/(-18), -1/3}
2*(k-((12*22^(1/2)-66)/(-18)))*(k-((-12*22^(1/2)-66)/(-18)))*(k+1/3) = 0
(2*(k-((12*22^(1/2)-66)/(-18)))*(k-((-12*22^(1/2)-66)/(-18)))*(k+1/3))/((k-1)*(k-11/3)*(k+11/3)) = 0
(2*(k-((12*22^(1/2)-66)/(-18)))*(k-((-12*22^(1/2)-66)/(-18)))*(k+1/3))/((k-1)*(k-11/3)*(k+11/3)) = 0 // * (k-1)*(k-11/3)*(k+11/3)
2*(k-((12*22^(1/2)-66)/(-18)))*(k-((-12*22^(1/2)-66)/(-18)))*(k+1/3) = 0
( k+1/3 )
k+1/3 = 0 // - 1/3
k = -1/3
( k-((-12*22^(1/2)-66)/(-18)) )
k-((-12*22^(1/2)-66)/(-18)) = 0 // + (-12*22^(1/2)-66)/(-18)
k = (-12*22^(1/2)-66)/(-18)
( k-((12*22^(1/2)-66)/(-18)) )
k-((12*22^(1/2)-66)/(-18)) = 0 // + (12*22^(1/2)-66)/(-18)
k = (12*22^(1/2)-66)/(-18)
k in { -1/3, (-12*22^(1/2)-66)/(-18), (12*22^(1/2)-66)/(-18) }
| 2y+3=4 | | 1+(-1/4)(1+5/6) | | 1/6(6t-4)=7/6t-t+4/12 | | (x+4)(x+4)-2x-5=(x-1)(x-1) | | X+20=(8)(15) | | 21-2w=7 | | (5/6)^2-(1/3)(2/5) | | -0.6x/3=8 | | -8(7x-7)=8(2x+7) | | 3xy-9y+10xy-1y= | | 40+y=92 | | 2b/9=4 | | 3*(-2)-4y=24 | | 42+y=92 | | 6+2x-7x=6 | | 3-4y=26 | | (0,1/2) | | 2e^8t+1/t+2e^-8t | | x/8=11 | | 102=6(1+2n) | | 9y-3-7y-5= | | x=y-14 | | 2x=y-28 | | y-28=2x | | 25=10+3y | | -20-8b=4(-7b+2)+6b | | x+3/3-x+1/2=4 | | 4.6x-4.79=13.5-6.8x | | -21=-.4285714286w | | 60p=32 | | -21=-4285714286w | | 7x^2=2x-1 |