(3k^2-2k-1)/(3k^2-14k+11)-(9k^2-1)/(3k^2+8k-11)

Simple and best practice solution for (3k^2-2k-1)/(3k^2-14k+11)-(9k^2-1)/(3k^2+8k-11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3k^2-2k-1)/(3k^2-14k+11)-(9k^2-1)/(3k^2+8k-11) equation:


D( k )

3*k^2+8*k-11 = 0

3*k^2-(14*k)+11 = 0

3*k^2+8*k-11 = 0

3*k^2+8*k-11 = 0

3*k^2+8*k-11 = 0

DELTA = 8^2-(-11*3*4)

DELTA = 196

DELTA > 0

k = (196^(1/2)-8)/(2*3) or k = (-196^(1/2)-8)/(2*3)

k = 1 or k = -11/3

3*k^2-(14*k)+11 = 0

3*k^2-(14*k)+11 = 0

3*k^2-14*k+11 = 0

3*k^2-14*k+11 = 0

DELTA = (-14)^2-(3*4*11)

DELTA = 64

DELTA > 0

k = (64^(1/2)+14)/(2*3) or k = (14-64^(1/2))/(2*3)

k = 11/3 or k = 1

k in (-oo:-11/3) U (-11/3:1) U (1:11/3) U (11/3:+oo)

(3*k^2-(2*k)-1)/(3*k^2-(14*k)+11)-((9*k^2-1)/(3*k^2+8*k-11)) = 0

(3*k^2-2*k-1)/(3*k^2-14*k+11)-((9*k^2-1)/(3*k^2+8*k-11)) = 0

(3*k^2-2*k-1)/(3*k^2-14*k+11)+(-1*(9*k^2-1))/(3*k^2+8*k-11) = 0

3*k^2-14*k+11 = 0

3*k^2-14*k+11 = 0

3*k^2-14*k+11 = 0

DELTA = (-14)^2-(3*4*11)

DELTA = 64

DELTA > 0

k = (64^(1/2)+14)/(2*3) or k = (14-64^(1/2))/(2*3)

k = 11/3 or k = 1

(k-1)*(k-11/3) = 0

3*k^2+8*k-11 = 0

3*k^2+8*k-11 = 0

3*k^2+8*k-11 = 0

DELTA = 8^2-(-11*3*4)

DELTA = 196

DELTA > 0

k = (196^(1/2)-8)/(2*3) or k = (-196^(1/2)-8)/(2*3)

k = 1 or k = -11/3

(k+11/3)*(k-1) = 0

(3*k^2-2*k-1)/((k-1)*(k-11/3))+(-1*(9*k^2-1))/((k+11/3)*(k-1)) = 0

((3*k^2-2*k-1)*(k+11/3))/((k-1)*(k-11/3)*(k+11/3))+(-1*(9*k^2-1)*(k-11/3))/((k-1)*(k-11/3)*(k+11/3)) = 0

(3*k^2-2*k-1)*(k+11/3)-1*(9*k^2-1)*(k-11/3) = 0

42*k^2-6*k^3-22/3*k-22/3 = 0

42*k^2-6*k^3-22/3*k-22/3 = 0

2*(21*k^2-3*k^3-11/3*k-11/3) = 0

21*k^2-3*k^3+(-11/3)*k-11/3 = 0

21*k^2-3*k^3+(-11/3)*k-11/3 = 0 // * 0

{ 1, -1, 11, -11 }

1

k = 1

63*k^2-9*k^3-11*k-11 = 32

1

-1

k = -1

63*k^2-9*k^3-11*k-11 = 72

-1

11

k = 11

63*k^2-9*k^3-11*k-11 = -4488

11

-11

k = -11

63*k^2-9*k^3-11*k-11 = 19712

-11

{ 1/3, -1/3, 1/9, -1/9, -1/3, 1/3, -1/9, 1/9, 11/3, -11/3, 11/9, -11/9, -11/3, 11/3, -11/9, 11/9 }

1/3

k

1/3

63*k^2-9*k^3-11*k-11 = -8

1/3

-1/3

k

-1/3

63*k^2-9*k^3-11*k-11 = 0

-1/3

k+1/3

66*k-9*k^2-33

63*k^2-9*k^3-11*k-11

k+1/3

9*k^3+3*k^2

66*k^2-11*k-11

-66*k^2-22*k

-33*k-11

33*k+11

0

66*k-9*k^2-33 = 0

DELTA = 66^2-(-33*(-9)*4)

DELTA = 3168

DELTA > 0

k = (3168^(1/2)-66)/(-9*2) or k = (-3168^(1/2)-66)/(-9*2)

k = (12*22^(1/2)-66)/(-18) or k = (-12*22^(1/2)-66)/(-18)

k in { (12*22^(1/2)-66)/(-18), (-12*22^(1/2)-66)/(-18), -1/3}

2*(k-((12*22^(1/2)-66)/(-18)))*(k-((-12*22^(1/2)-66)/(-18)))*(k+1/3) = 0

(2*(k-((12*22^(1/2)-66)/(-18)))*(k-((-12*22^(1/2)-66)/(-18)))*(k+1/3))/((k-1)*(k-11/3)*(k+11/3)) = 0

(2*(k-((12*22^(1/2)-66)/(-18)))*(k-((-12*22^(1/2)-66)/(-18)))*(k+1/3))/((k-1)*(k-11/3)*(k+11/3)) = 0 // * (k-1)*(k-11/3)*(k+11/3)

2*(k-((12*22^(1/2)-66)/(-18)))*(k-((-12*22^(1/2)-66)/(-18)))*(k+1/3) = 0

( k+1/3 )

k+1/3 = 0 // - 1/3

k = -1/3

( k-((-12*22^(1/2)-66)/(-18)) )

k-((-12*22^(1/2)-66)/(-18)) = 0 // + (-12*22^(1/2)-66)/(-18)

k = (-12*22^(1/2)-66)/(-18)

( k-((12*22^(1/2)-66)/(-18)) )

k-((12*22^(1/2)-66)/(-18)) = 0 // + (12*22^(1/2)-66)/(-18)

k = (12*22^(1/2)-66)/(-18)

k in { -1/3, (-12*22^(1/2)-66)/(-18), (12*22^(1/2)-66)/(-18) }

See similar equations:

| 2y+3=4 | | 1+(-1/4)(1+5/6) | | 1/6(6t-4)=7/6t-t+4/12 | | (x+4)(x+4)-2x-5=(x-1)(x-1) | | X+20=(8)(15) | | 21-2w=7 | | (5/6)^2-(1/3)(2/5) | | -0.6x/3=8 | | -8(7x-7)=8(2x+7) | | 3xy-9y+10xy-1y= | | 40+y=92 | | 2b/9=4 | | 3*(-2)-4y=24 | | 42+y=92 | | 6+2x-7x=6 | | 3-4y=26 | | (0,1/2) | | 2e^8t+1/t+2e^-8t | | x/8=11 | | 102=6(1+2n) | | 9y-3-7y-5= | | x=y-14 | | 2x=y-28 | | y-28=2x | | 25=10+3y | | -20-8b=4(-7b+2)+6b | | x+3/3-x+1/2=4 | | 4.6x-4.79=13.5-6.8x | | -21=-.4285714286w | | 60p=32 | | -21=-4285714286w | | 7x^2=2x-1 |

Equations solver categories